Thermal Cycloreversion of 2J-Dimet hyl-6- *(0-* **hydroxyalkyl)-4H-**1.3-dioxin-4-ones: Mono-, Di-, and Trimeric **Macrocyclic** β **-Keto Lactones by Intramolecular Trapping of (w-Hydroxy)ac ylketenes**

Chixu Chen, Erik K. **Quinn, Marilyn M.** Olmstead, and Mark J. Kurth^{*,1}

Department of Chemistry, University of California, Davis, California 95616

Received February 22, **1993**

Prompted by the discovery of numerous macrolide antibiotics,² development of methodology for the preparation of macrolides has received much synthetic attention? One interesting strategy developed by Boeckman4 and co-workers exploits thermal cycloreversion of a 2,2 dimethyl-6-(ω -hydroxyalkyl)-4H-1,3-dioxin-4-one to form a highly reactive acylketene intermediate which suffers intramolecular addition by the ω -hydroxyl moiety to form a macrocyclic β -keto lactone. This general and quite high yielding strategy⁵ proceeds, as outlined in Scheme I, by thermal decomposition of the "diketene-acetone" adduct6 I in refluxing toluene to generate acetone and a highly reactive acylketene **11.'** Under suitable high dilution condition, acylketene **I1** is preferentially trapped by intramolecular hydroxyl addition to deliver the corresponding monomeric macrolide **111.**

We were intrigued by the potential of **this** macrolideforming strategy in connection with another synthetic method project ongoing in our laboratory and thus set out to incorporate $I \rightarrow III$ as the key step in our synthesis of macrocyclic β -keto lactones. Smith *et al.*'s report that the lithio anion of an β -alkoxy- α , β -unsaturated ester undergoes C_{γ} -alkylation⁸ led us to consider preparing analogs of I by forming the indicated $C\gamma$ - $C\delta$ bond.

Thus, our first target, dioxinone **3a,** required 2,2,6 **trimethyl-l,3-dioxin-2-one (1)** and iodoalkene **2a as start**ing materials. The former is commercially available⁹ and the latter was readily prepared **as** follows. The dianion of propargyl alcohol¹⁰ was alkylated with 1-chloro-3iodopropane to give 6-chloro-4-hexyn-1-01 (55%) which

(6) Petaeis, N. A.; Patane, M. A. *J. Chem. SOC., Chem. Commun.* **1990, 836-7.**

(6) Carroll, M. F.; Bader, A. R. *J. Am. Chem. Soc.* **1953,** *75, 6400.*

(7) (a) Clemene, R. J.; Hyatt, J. A. *J. Org. Chem.* **1986,50,2431-6. (b) Clem-, R. J.; Witmman, J. S.** *J. Am. Chem. Soe.* **1989,111,2186-93.**

(8) Smith, A. B., III, Scarborough, R. M., Jr. *Tetrahedron Lett.* **1978, 44,4193-6. (9) 2,2,~Trimethyl-1,3-dioxin-2-one is commercially available: Aldricb**

 (10) Szurdoki, F.; Novak, L.; Szantay, C.; Baitz-Gacs, E.; Toth, M. *Org. Rep. Roced.* **1988,20,476-83.**

Scheme I

was then partially hydrogenated to (Z) -6-chloro-4-hexen-1-ol (Lindlar catalyst, H_2 ¹¹ 96%). Subsequent hydroxyl protection with tert-butyldimethyhilyl chloride12 (98 **9%**) 1-ol (Lindlar catalyst, H_2 ;¹¹ 96%). Subsequent hydroxyl
protection with *tert*-butyldimethylsilyl chloride¹² (98%)
and halogen exchange (Cl \rightarrow I; excess sodium iodide in acetone)lS delivered **2a** in excellent yield **(48%** overall). Treating the lithio anion of **1,** generated by subjecting **2,2,6-trimethyl-4H-l,3-dioxin-4-one** to HMPA complexed **LDA** in THF,14 with **2a** afforded dioxinone **3a** (OR = OSi- (t Bu)Me; 32–54 $\%$) which was then deprotected (OSi(t Bu)-LDA in THF,¹⁴ with 2a afforded dioxinone 3a (OR = OSi-
('Bu)Me; 32–54%) which was then deprotected (OSi('Bu)-
Me₂ \rightarrow OH; 87%). When the resulting (w-hydroxyalkenyl)-
dioxinone 3a (OB = OH) must thermally activated $Me₂ \rightarrow OH; 87\%$). When the resulting (ω -hydroxyalkenyl)-
dioxinone **3a** (OR = OH) was thermally activated
(dioxinone \rightarrow acylketene) in refluxing toluene under dilute condition $(\simeq 10^{-4} \text{ M})$ for a period of 3 h (method A), two products were obtained (separated by flash chromatography on silica gel). The product with higher R_f (0.39, 3:1) EtOAc/hexanes) readily recrystallized from hexane to give white crystals in fair yield (56%). Unexpectedly, single crystal X-ray diffraction revealed that **this** compound was the 22-membered ring dimeric macrocyclic **Sa** ([XI - *cis-*CH=CH-; see Table I). The lower R_f (0.20, 3:1 EtOAc/ hexanes) product, a pale yellow oil, was isolated in 20% yield. Fast atom bombardment (FAB) mass spectrometry $[(M + H)^+ = 547]$ showed that this compound was the 33-membered ring trimeric product **6a,** not the monomeric &keto lactone **4a.** Indeed, **4a** was not detected in the crude reaction mixture from $3a$ $(R = H)$.

⁽¹⁾ NIH RCDA recipient (1989-1994; EC00182).

⁽²⁾ (a) Periti, P.; Mazzei,T.; Mini, **E.; Novelli, A.** *Clin. Phrrrmocokinet.* 1992, 23, 106-31. (b) Kirst, H. A. J. Antimicrob. Chemother. 1991, 28, 787–90. (c) Kirst, H. A. Annu. Rep. Med. Chem. 1990, 25, 119–28. (d)
Wise, R. J. Antimicrob. Chemother. 1990, 26, 5–6. (e) O'Hagan, D. Nat. *Rod. Rep.* **1989,6,206-19.**

⁽³⁾ For recent reviewe on macrolide synthesis, *see:* **(a) Takahaehi, T.** *Stud. Not. Rod. Chem.* **1991,8 (Stereoeel. Synth., Pt. E), 176-204. (b) Stork, G.; Rychnoveky, 5. D.** *Rue Appl. Chem.* **1986,58, 767-72.** *(c)* **Pateraon, I.;** Mansuri, **M. M.** *Tetrahedron* **1981, 41, 3669-624. (d) Maaamune, S.** *Aldrichim. Acta* **1978, 11, 23-32. (e) Nicolaou, K. C.** *Tetrahedron* **1977,33,683-710.**

^{(4) (}a) Boeckman, R. K., Jr.; Ped, R. B. *J. Org. Chem.* **1986,51,6486- 9. (b) Boeckman. R. K..** .. **Jr.: Pruitt. J. R.** *J. Am. Chem. Soc.* **1989.111.** .. **868.**

^{24,610-0.}

⁽¹¹⁾ Ulan, **J. G.; Kuo, E.; Maier, W. F.** *J. Org. Chem.* **1987,62,3126-32.**

⁽¹²⁾ Williams, R. M.; Sabol, M. R.; Kim, **H.; Kwaet, A.** *J. Am. Chem. SOC.* **1991,113,6621-33.**

⁽¹³⁾ (a) Brody, F.; Bogert, M. T. *J. Am. Chem. SOC.* **1943,66,1O&b2.** (b) Abraham, E. P.; Smith, J. C. J. Chem. Soc. 1936, 1605.

(14) (a) See ref 8. (b) Herrmann, J. L.; Kieczykowski, G. R.;

Schlessinger, R. H. *Tetrahedron Lett.* **1973**, 26, 2433-6.

Parametem for **Sa, Sb,** *b,* **and** *k* **Table I. Crystallographic Data and Refinement**

	õа	5Ь	õс	ŏе
crystal system	monoclinic	monoclinic	triclinic	monoclinic
space group	$P2_1/n$	$P2_1/n$	PĪ	$P2_1/n$
z		2		
a, A	5.366(2)	12.702(6)	5.531(1)	4.601(2)
b, A	18.174(4)	5.159(2)	8.053(1)	24.207(3)
c, A	9.789(2)	15.022(6)	11.724(1)	8.242(2)
β , deg	99.63(2)	99.01(3)	100.27(2)	104.32(2)
crystal size, mm	$0.075 \times 0.075 \times 0.30$	$0.08 \times 0.08 \times 0.50$	$0.52 \times 0.56 \times 0.56$	$0.04 \times 0.04 \times 0.48$
λ, Α	0.71073	0.71073	0.71073	1.54178
2θ , deg	$0.0 - 50.0$	$0.0 - 45.0$	$-0.0 - 55.0$	$0.0 - 108.5$
collected reflections	1923	1508	2232	1668
unique reflections	1674	1277	2232	1082
obsd reflections	1326	889	1942	878
final R indices	0.0622	0.0672	0.0428	0.0382

Surprised at this outcome and in an attempt to favor formation of **4a,** this thermal cycloreversion/macrocyclization was conducted by slow addition (syringe pump; 2 h addition time) of a dilute xylene solution of 3a (OR $=$ OH) to refluxing xylene (125-132 °C) with rapid stirring (method B).15 Under these conditions,16 the concentration of reactive acylketene intermediate was always $\ll 10^{-4}$ M and still there was no evidence for formation of **4a;** dimeric macrolide 5a and trimeric macrolide **6a** were formed in 51 and 18% yield, respectively.

These unexpected resulta with **3a** led us **to** investigate macrocyclization reactions for other $(\omega$ -hydroxyalkyl)dioxinones. **Our** first thought was that perhaps the endo- *(2)* configuration of the **(w-hydroxyalkeny1)acylketene** derived from **3a** precluded ita adopting a conformation which could lead to monomacrolactonization.¹⁷ In an attempt to probe **this** issue, the second target we selected for study was dioxinone **3b** in which the carbon-carbon double bond now had the (E) -configuration. The requisite iodoalkene **2b** was synthesized **as** described for **3a** with the exception of how the carbon-carbon triple bond was partially reduced. Thus, 6-chloro-4-hexyn-1-01 was reduced with lithium aluminum hydride¹⁸ to give (E) -6chloro-4-hexen-l-o1(43%). Subsequent silylation,halogen exchange, and Cy-alkylation of dioxinone 1 delivered **3b.** Again, high-dilution thermal **cycloreversion/macrocycliza-**

⁽¹⁶⁾ When the addition time was prolonged to 4.6 dap, the decarboxylation product lcie-(7-hydroxy-5-hepten-l-yl)methyl ketone results. Trace water contamination in this macrolactonization reactions leads to the formation of hydroxy ketone i and is presumably the consequence of water intercepting the acylketene intermediate to give the corresponding b-keto-o-hydroxy carboxylic acid which undergoes subeequent thermal decarboxylation to i: IR (neat) 3415 (br OH), 17.12 *(e0)* cm-l; 'H-NMR δ 1.29–1.44 (m, 2 H), 1.52–1.65 (m, 2 H), 2.04 (s, 3 H), 2.08 (q, 2
H, J = 7 Hz), 2.43 (t, 2 H, J = 7 Hz), 4.19 (m, 2 H), 5.43–5.66 (m, 2 H),
(note: OH proton not observed); ¹³C-NMR δ 23.21, 27.09, 28.98, 29.88, **43.43,58.47,128.80,132.34,209.121 was** isolated **in 40% yield together with trace amounts of the monomeric 8-keto lactone 4a [IH-NMR: ⁶** with trace amounts of the monomeric β -keto lactone 4a [¹H-NMR: δ 1.43–1.52 (m, 2 H), 1.60–1.70 (m, 2 H), 2.11 (dt, 2 H, $J = 6.5, 7$), 2.56 (t, 2 H, $J = 7$), 3.40 (s, 2), 4.66 (d, 2 H, $J = 4.5$), 5.72–5.84 (m, 2 H) **yields of Sa and 6a were decreased to 31 and 4%, respectively.**

(17) Indeed, the free energy difference between *endo-(E)-* **and** *endo-* **(2)-cycloundecene in acetic acid at 373.6 K is +0.67 kcal/mol.** &. **Cope, A. C.; Moore, P. T.; Moore, W. R.** *J. Am. Chem. Soc.* **1969,81,3163. (18) Grant, B.; Djerassi, C.** *J. Org.* **1974,39 (7), 968-70.**

tion produced no monomeric macrolide **(4b).** Rather, the 22-membered ring dimeric macrolide **5b** (white crystale; see X-ray in Table I) was obtained in 48 and *50%* yields from methods A and **B,** respectively, and the 33-membered ring trimeric macrolide **6b (oil)** was isolated in 18 % yield from both methods.

Would a side-chain saturated dioxinone lead to a monomeric macrolide? To answer this question, *(w*hydroxyalky1)dioxinone **3c** was prepared by alkylating **¹** with iodoalkane **2c,** in turn prepared by reacting 1,6 hexanediol sequentially with concentrated hydriodic acid¹⁹ (52 % yeld) and tert-butyldimethylsilyl chloride. When dioxinone **3c** was cyclized under condition identical to those employed for **3a** and **3b,** only crystalline dimeric (22-membered) and liquid trimeric (33-membered) macrolides were obtaned (i.e., **Sc** and **6c** were **isolated** in 49 and 13% yield, respectively; see X-ray data for **Sc** in the Table I). *Aa* with **3a** and **3b, 3c** gave **no** monomeric macrolide which leads us to conclude that ll-membered ring macrolide8 are not accessible by **this** thermal cyclo**revemion/macrocyclization** method.

The last two substrates investigated in **this** series were **(w-hydroxyalky1)dioxinonea 3d,** a potential 12-membered ring precursor, and **38,** a potential 10-membered ring precursor. These dioxinones were prepared in **a** fashion parallel to that deecribed for **3c,** but starting with 1,7 heptanediol and 1,5-pentanediol, respectively.

Refluxing 3d in toluene under dilute condition $(\simeq 10^{-4})$ M; method A), produced three products which were isolated by flash chromatography on silica gel. The compound with highest *Rf* (0.57; 31 EtOAc/hexanes) was a colorless oil obtained in 28% yield. **FAB maas** spectrometry $[(M + H)^{+} = 199.1333]$ established this compound **as** the monomeric 12-membered ring macrolide **4d.** The second fraction $(R_f = 0.38; 3.1 \text{ EtOAc/hezanes})$ delivered a white crystalline compound in 41 % yield which proved to be the dimeric 24-membered ring macrolide **bd** $[(M + H)^{+} = 397.2602]$. Fraction three $(R_f = 0.26; 3:1)$ EtOAc/hexanes) produced a pale yellow **oil** in 12 % yield and **FAB** characterization established it to be the 36 membered ring trimeric macrolide **6d.** Slow addition of a dilute toluene solution of **3d** into refluxing toluene (method **B)** gave monomer **4d** in **50%** yield, dimer **5d** in 26% yield, and trimer 6d in 9% yield.^{20,21}

Like **3a-c,** subjecting dioxinone **38** (OR = OH) to method B cyclization conditions resulted in dimer (20-membered **Se;** see X-ray data in Table I) and trimer (30-membered

⁽¹⁵⁾ Dimeric macrolactones resulting from photogeneratad hydroxyketenes have been reported: Quinkert, G.; Billhard, U.-M.; Jakob, H.; Fischer, G.; Glenneberg, J.; Nagler, P.; Autze, U.; Heim, **N.; Wacker, M.;** Schwalbe, T.; Kurth, Y.; Bats, J. W.; Dürner, G.; Zimmermann, G.; Kessler, *igo* H. *Helv. Chim. Acta* **1987, 70,771-862.**

⁽¹⁹⁾ Vogel, A. I. *J. Chem. SOC.* **1948,636-47.**

It appears that $(\omega$ -hydroxyalkylketenes derived from substrates like **3** are quite sensitive to transition-state conformational effects as manifested by "ring" size.²² Even under high dilution condition $(<10⁻⁴ M)$ only 3d produces monomeric product 4d (12-membered ring); **3a-c** and **36** give **only** dimeric **(5;** 22- and 20-membered rings, respectively) and trimeric *(6;* 33- and 30-membered rings, respectively) products. Further implications of this chemistry will be reported in due course.

Experimental Section

General. Tetrahydrofuran (THF) and toluene were refluxed over and distilled from sodium-potassium immediately prior to **use. Hexamethylphoephorictriamide** (HMPA) was distilled from and stored over CaH₂. 2,2,6-Trimethyl-4H-1,3-dioxin-4-one was distilled under vacuum (63-64 °C/1-2 mm) and stored at -4 °C. All reactions were conducted under a nitrogen or argon atmospheres and normal workup consisted of washing extracts with water and brine, drying over MgSO₄, filtration, and concentration on a rotary evaporator at water aspirator pressure. Flash chromatography refers to the procedure of Still et al.²³ Preparative TLC was performed on **0.25 X 200 X 200 mm** generalpurpoee, precoated silica gel glass plates. Melting points are uncorrected. All NMR spectra were measured in CDCl₃ unless otherwise noted. ¹H- and ¹³C-NMR spectra were measured at **300** and **75 MHz,** respectively, and chemical *shifte* are reported in ppm downfield from internal tetramethylsilane. Elemental analyses were performed at the Midwest Microlab, Indianapolis. Mass spectra were obtained with **VG TRIO2** (high resolution; **VG-11-28** data system) and **VG** !&AB-HS-2F (FAB) analytical instruments by Dr. Dan Jones (Facility for Advauced Instrumentation, University of California, Davis). X-ray crystallographic data were collected on automated Siemens **R3m/V** (Sa-**5c)** or P4RA (5e) diffractometers and the structures were solved by direct methods and refined by the full-matrix least-squares method with the aid of SHELXTL PLUS programs.²⁴

General Procedure. Preparation **of 6-(o-Hydroxyalk-lyl)-2,2-dimethyl-4H-1,3-dioxin-4-one (3a-e).** A solution of lithium diisopropylamide in **THF/heptane/ethylbenzene (0.75 mL; 2.0 M, 1.5 mmol) at 0 °C was diluted with THF** (2 mL) **and** HMPA (296 mg, 1.65 mmol). 2,2,6-Trimethyl-4H-1,3-dioxin-4one **(1; 213** mg, **1.5** "01, in **1mL** THF) was added dropwise over a period of **5** min and the resulting light orange solution was stirred at 0 °C for 30 min. A solution of iodoalkyl silyl ether 2 **(1** "01) in THF **(1 mL)** was added dropwise over **10** min and the mixture was allowed to slowly warm to room temperature and stirred an additional **14** h. The mixture was concentrated by rotary evaporation and the residue partitioned between ether (10 mL) and satuated NH₄Cl(10 mL). The layers were separated and the aqueous layer was extracted with ether $(2 \times 5 \text{ mL})$, acidified to pH **6,** and extracted *again* (ether; **2 X 5 mL).** Normal workup of the combined ethereal layers gave a yellow oil which was purified by flash chromatography on silica gel (1.8 EtOAc) hexanes) to give silyl-protected dioxinone **3 (OR** = OSi('Bu)Mez; **2554%** yield).

To silyl-protected dioxinone **3** (1 mmol) in THF **(1.5 mL)** at room temperature was added dropwiee of a solution of tetrabutylammonium fluoride **(1.0** M in THF, **1.5 mmol,1.5 mL).** After stirring **2** h at room temperature, the mixture was concentrated by rotary evaporation and the residue partitioned **between** ether **(10 mL)** and water **(10 mL).** The layers were separated and the aqueous layer was extracted with ether $(6 \times 5 \text{ mL})$. Normal workup of the combined ethereal layers gave a yellow oil which was purified by flash chromatography on silica gel **(1:2** EtOAc/ hexanes) to give dioxinone 3 ($OR = OH$; $76-87\%$ yield).

cis-6-(7-Hydroxy-5-hepten-1-yl)-2,2-dimethyl-4H-1,3-diox**in-d-one (34** was prepared in **45%** yield from **2a:** IR (neat) **3431** (br), **3002** (m), **2936,2863,1728,1632,1391** cm-1; 'H-NMR **6 1.36-1.49** (m, **2** H), **1.49-1.63** (m, **2** H), **1.66 (e, 6** H), **2.12** (dt, **²**H, J = **70,6.0** Hz), **2.22** (t, **2 H,** J = **7.5** *Hz),* **4.21** (d, **2** H, J **7** *Hz),* **5.22** *(8,* **1** H), **5.46-5.56** (m, **1** H), **5.58-6.68** (m, **1 H) [note:** OH proton not detected]; ¹³C-NMR δ 24.70 (gem-dimethyls), **24.93, 26.64, 28.53, 33.11, 57.94, 92.83, 106.07, 129.16, 131.17,** 161.40, 171.75. Anal. Calcd for C₁₃H₂₀O₄: C, 64.98; H, 8.39. Found: C, 65.05; H, 8.39.

trans-6-(7-Hydroxy-5-hepten-1-yl)-2,2-dimethyl-4H-1,3dioxin-4-one (3b) was prepared in 30% yield from 2b: IR (neat) **3424** (br), **3001** (w), **2936,2860,1727,1632,1391** cm-1; 1H-NMR *^b***1.28-1.38** (m, **1** H) **1.38-1.49** (m, **2** H), **1.50-1.62** (m, **2** H), **1.67** Hz), **4.10** (m, **2** H), **5.22** (8, **1** H), **5.58-5.72** (m, **2** H); **W-NMR ⁶24.73** (gem-dimethyls), **24.89, 28.15, 31.46,33.15,63.03,92.82,** 106.09, 129.49, 131.47, 161.37, 171.83. Anal. Calcd for C₁₃H₂₀O₄: C, **64.98; H, 8.39.** Found C, **65.08;** H, **8.44. (8,6** H), **2.03-2.11** (dt, **2** H J ⁼**7.0,5.8** *Hz),* **2.21** (t, **2** H, *J=* **7.6**

B-(?-Hydroxyheptan- 1-~1)-21-dimethy1-4H-l,3-diolin-4 one (30) was prepared in **28%** yield from2c: **IR** (neat) **3436 (br), 2999,2933,2858,1728,1632,1392** cm-l; lH-NMR **6 1.30-1.40** (br m, **7** H), **1.49-1.62** (m, **4** H), **1.66** *(8,* **6** H), **2.20** (t, **2** H, J ⁼**7.5** (gem-dimethyla), **26.22, 25.27, 28.54, 28.64, 32.18, 33.18, 62.06,** 92.60, 105.96, 161.35, 172.01. Anal. Calcd for C₁₃H₂₂O₄: C, 64.44; H, 9.15. Found: C, 64.54; H, 9.20. H_2), 3.62 (dt, 2 H, J = 3.4, 6.1 Hz) 5.21, (s, 1 H); ¹³C-NMR δ 24.59

6-(8-Hydrosyoctan-l-yl)-2,2-dimethyl-4H-l,3-diosin-4 one (3d) was prepared in **25** *7%* yield from *2d:* IR (neat) **3436** (br), **2998,2930,2857,1728,1633,1388** cm-l; lH-NMR *b* **1.32** (br m, **⁸**H), **1.47-1.66** (m, **4** H), **1.67** *(8,* **6 H), 2.20** (t, **2** H, J ⁼**7.6** *Hz)* **3.63** (dt, **2 H,** J ⁼**4.8, 6.2** Hz), **6.22** *(8,* **1** HI **[note: OH** proton not detected]; ¹³C-NMR δ 24.81 (gem-dimethyls), 25.49, 28.68, **28.95,29.01,32.46,33.38,62.51,92.84,106.10,161.41,172.06 [note:**

two methylene carbons are coincident at δ 25.49 in this ¹³C spectrum]. Anal. Calcd for C14HaO4: C, **65.60,** H, **9.44.** Found **65.44,** H, **9.44.**

6-(6-Hydroxyhexan-1-yl)-2,2-dimethyl-4H-1,3-dioxin-4**one (38)** was prepared in **28%** yield from 20: **IR** (neat) **3436** (br), **2996,2932,2858,1728,1631** cm-l; lH-NMR **6 1.32-1.37** (m, **4 H), 1.51-1.58** (m, **4** H), **1.65** *(8,* **6** H), **2.19** (t, **2** H, J ⁼**7.5** *Hz),* **3.61** (t, **2** H, *J* = **6.5** Hz), **5.20** *(8,* **1** H) **[note:** OH proton not detected]; **1Bc-NMR624.67 (gem-dimethyla),25.09,25.36,28.42,32.10,33.19, 62.06, 92.70, 105.99, 161.26, 171.93. Anal. Calcd for C₁₂H₂₀O₄:** C, **63.14;** H, **8.83.** Found C **62.98,** H **8.81.**

General Procedure. Thermal Cycloreverrion/Macryclization. Method A. A solution of 6-(ω -hydroxyalkyl)dioxinone 3 (51 mg. 0.2 mmol) in toluene $(1.5 \text{ L}; \approx 10^{-4} \text{ M})$ was refluxed for **3** h. The reaction mixture was cooled to room temperature and concentrated by rotary evaporation. The residue was purified either by flash chromatography on silica gel using a stepwise increase in eluent polarity $(1:4 \rightarrow 1:3 \rightarrow 1:2)$ EtOAc/hexanes) or preparative TLC **(1:2** EtOAc/hexanes).

General Procedure. Thermal Cycloreversion/Macrocyclization. Method B. A solution of 6-(ω -hydroyalkyl)dioxinone **3** (51 mg. 0.2 mmol) in toluene (40 mL) was added dropwise over 2 h to refluxing toluene $(1.5 \text{ L}; \text{x}$ ylene was substituted for toluene in the *case* of **3a)** with rapid stirring. The resulting solution was refluxed and stirred for **3** h at which time the reaction mixture was cooled to room temperature and concentrated by rotary evaporation. The residue was purified either by flash chromatography on silica gel **using** a stepwise increase in eluent **polarity** $(1:4\rightarrow 1:3\rightarrow 1:2EtoAc/hexanes)$ or preparative TLC $(1:2EtoAc/h)$ hexanes).

cis-1,12-Dioxacyclodocosa-9,20-diene-2,4,13,15-tetraone (5a) was obtained in *56* and **51%** yields (method A and method B,

⁽²⁰⁾ It is interesting to contrast our 12-membered ring macrolactonization results (i.e., $3d \rightarrow 4d$) with those reported using the Corey/Nicolaou **ization results (Le., 3d** - *M)* **with those reported uebg the Corey/Nicolaou (12-membered macrolide in 47% yield and the 24-membered dilide in 30% yield Corey, E. J.; Nicolaou, K. C.** *J.* **Am. Chem.** *SOC.* **1974, W, 6614-6) and Mukaiyama (12-membered macrolide in 61** % **yield and the** 24-membered dilide in 24% yield: Mukaiyama, T.; Usui, M.; Saigo, K. **Chem.** *Lett.* **1976,4940) methods.**

⁽²¹⁾ Interestingly, 4d is thermally stable as subjecting this pure monomeric macrolide to the reaction conditions (toluene, 110 °C, 3 h) **results in no decomposition and no interconversion to dimer Sd or trimer 6d.**

⁽²²⁾ For a review of medium and large ring **strains, see: Granik, V. G.**

Russ. Chem. Rev. 1982, 51, 119–34.
(23) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–5.
(24) The author has deposited atomic coordinates for 5a-c and 5e with

the Cambridge Crystallographic Data Centre. The coordinates *can* **be obtained, on request, fromthe Director, Cambridge Cryetallographic Data Centre, 12 Union Road, Cambridge, CB2 lEZ, UK.**

respectively): mp 83.6-83.9 °C; IR (KBr) 3024, 2932, 2870, 1728, **1697** cm-1; **'H-NMR** (acetone-d6) **6 1.32-1.47** (m, **4 H), 1.47-1.60 (m,4H),2.14(dt,4H,J=7.8,6.0Hz),2.56(t,4H,J=7.5Hz),** 3.50 (s, 4 H), 4.60 (d, 4 H, $J = 7.5$ Hz), 5.55-5.74 (m, 4 H); ¹³C-**NMR (acetone-&) 6 22.80,27.02,28.47,42.27,49.30,60.04,123.54, 137.11, 167.45, 202.60; FAB MS** m/e , $[M + H]$ ⁺ = 365. Anal. Calcd for C₂₀H₂₈O₆: C, 65.92; H, 7.74. Found: C, 66.05; H, 7.77. Crystallographic data and refinement parameters for **Sa** are given in the Table I.

cie-l,l2~3-Trioxacyclotritriaconta-9,2O~l-triene2,4,13,- 16,24,26-hexaone (sa) was obtained in **20** and **18%** yields (method A and method B, respectively): IR (neat) **3026,2933, 2863,1742,1712** cm-';'H-NMR (acetone-&) **6 1.32-1.47** (m, **6H), 1.47-1.65** (m, **6 H), 2.14** (dt, **6 H, J** = **7.8, 6.0 Hz), 2.58** (t, **6** H, $J = 7.5$ Hz), 3.50 (s, 6 H), 4.64 (d, 6 H, $J = 7.5$ Hz), 5.50-5.73 (m, **6 H); WNMR** (acetone-de) **6 22.99, 27.16, 28.71,42.28, 49.28, 49.23,60.48,123.88,135.96,167.45,202.62;** FAB **MS** *mle* **[M** + H ⁺ = 547. Anal. Calcd for C₃₀H₄₂O₉: C, 65.92; H, 7.74. Found: C, **66.01; H, 7.89.**

trane- **1,12-Dioxacyclodocosa-9,2O-diene-2,4,13,16-tetraone (Sb)** was obtained in 48 and *50%* yields (method A and method B, respectively): mp 93.3-93.8 °C; IR (KBr) 3042, 2945, **2890,1745,1711** cm-l; **'H-NMR 6 1.32-1.42** (m, **4 H), 1.52-1.62 (m,4 H), 2.03** (dt, **4 H, J= 7.2,7.0 Hz), 2.50** (t, **4 H, J= 7.1 Hz), 3.39 (a, 4** H), **4.56** (d, **4 H, J** = **6.4 Hz), 5.49-5.59** (m, **2 H), 5.72- 5.82** (m, **2 H); 13C-NMR 6 22.59,27.94,31.80,42.20,49.89,65.62, 123.23, 136.74, 166.74, 202.19;** FAB **MS** *mle,* **[M** + **HI+** = **365.** Anal. Calcd for C₂₀H₂₈O₆: C, 65.92; H, 7.74. Found: C, 66.10; **H, 7.78.**

trans- **1,12,23-Trioxacyclotritriaconta-9,20,3 l-triena2,4,- 13,15,24,26-hexaone (6b)** was obtained in **18** and **18%** yields (method **A** and method **B,** respectively): IR (neat) **3024, 2737, 2859, 1744,1715** cm-l; **'H-NMR 6 1.35-1.45** (m, **6 H), 1.55-1.65** (m, **6 H), 2.06** (dt, **6 H, J** = **7.2,7.0** Hz), **2.53** (t, **6** H, J ⁼**7.0** *Hz),* **3.44 (e, 6 H), 4.58** (d, **6 H, J** = **6.5 Hz), 5.50-5.60** (m, **3** H), **5.71- 5.81** (m, **3 H); W-NMR 6 22.68,27.86,31.73,42.58,49.34,65.85, 123.48, 136.35,166.92,202.54;** FAB **MS** *mle,* **[M** + **HI+** = **547.** Anal. Calcd for C₃₀H₄₂O₉: C, 65.92; H, 7.74. Found: C, 66.30; **H, 7.81.**

1,12-Dioxacyclodocosane-2,4,13,15-tetraone (5c) was obtained in **49%** yield (method A): mp **107.1-107.4** "C; IR (KBr) **29.26,28.55,1740, 1711,1296** cm-'; **'H-NMR 6 1.22-1.40** (br m, **12 H), 1.54-1.66** (m, 8 **H), 2.55** (t, **4 H, J** = **7.2** *Hz),* **3.42** *(8,* **4 H), 28.98, 42.68, 49.84, 65.29, 167.03, 202.31; FAB MS** m/e **, [M + H]⁺ = 369. Anal. Calcd for C₂₀H₃₂O₆: C, 65.19; H, 8.75. Found: C, 65.11; H, 8.75. 4.16 (t, 4 H,** J ⁼**6.0** Hz); **'W-NMR 6 23.06, 25.89, 28.36,28.90,**

l,l2,23-Triourcyclotritriacontane-2,4,13,lS~4,26-hexaone (60) was obtained in **13** % yield (method A): IR (CC4) **2935, 2835,1746,1719,1231** cm-l; **'H-NMR 6 1.33** (br m, **18 H), 1.56- 1.68** (m, **12 H), 2.54** (t, **6 H,** J = **7.1 Hz), 3.43 (e, 6 H), 4.14** (t, **⁶** **H, J=6.0Hz); 'W-NMR6 23.17,25.54,28.32,28.68,42.89,49.40, 65.31, 167.24, 202.77;** FAB **MS** *mle,* **[M** + **HI+** = **553. Anal.** Calcd for C₃₀H₄₈O₉: C, 65.19; H, 8.75. Found: C, 65.19; H, 8.69.

Oxacyclododecane-2,4-dione (4d) waa obtained in **28** and *50%* yields (method A and method **B,** respectively): IR (CC4) **2936,2860,1744,1715,1252** *cm-';* **'H-NMR 6 1.24-1.40** (m, **6 H), 1.40-1.49** (m, **2 H), 1.62-1.74** (m, **4 H), 2.625** (dd, **2** H, J ⁼**6.2, 621.73,23.27,23.73,24.78,26.08,26.49,40.47,50.71,66.30,166.73, 202.28.** Highresolution FAB **MS** *mle,* **199.1333, [M** + **HI+.** Calcd for $[C_{11}H_{18}O_8 + H]^+$ 199.1334. **6.2** *Hz),* **3.41 (8,2 H), 4.16** (dd, **2 H, J 4.8,5.7** *Hz);* **'BC-NMFt**

1,13-Dioxacyclotetracosane-2,4,14,16-tetraone (5d) was obtained in **41** and **26%** yields (method A and method B, respectively): mp **123.7-124.0** *OC;* IR (KBr) **2930, 2849, 1746, 1709,1246** cm-l; IH-NMR **6 1.24-1.42** (br m, **16 H), 1.55-1.68** (m, **8** H), **2.53** (t, **4 H, J** = **7.4 Hz), 3.41 (s,4 HI, 4.15** (t, **4 H, J** = **6.0 49.73, 65.30, 167.00, 202.43.** High resolution FAB MS *mle,* 397.2602 , $[M + H]^+$. Calcd for $[\text{C}_{22}\text{H}_{86}\text{O}_6 + H]^+$ 397.2590. *Hz);* **'W-NMR S 23.58, 25.90, 28.46, 28.77, 28.90, 29.04, 42.68,**

1,13,2&Trioxacyclohxatriacontane2,4,14,16,26,28-hexaone(6d)wasobtainedin **12and9%** yields(methodAandmethod B, respectively): **IR** (CC4) **2932, 2856, 1744, 1717, 1233** *cm-';* **'H-NMR 6 1.25-1.38** (br m, **24 H), 1.50-1.70** (m, **12 H), 2.52** (t, **623.40,25.71,28.46,28.77,28.80,29.00,42.84,49.45,65.46,167.18, 202.54;** FAB **MS** *mle,* **[M** + **HI+** = **595.** Anal. Calcd for C₃₃H₅₄O₉: C, 66.64; H, 9.15. Found: C, 66.40; H, 9.11. $6 H, J = 7.2$ **Hz**), 3.42 ($8, 6$ **H**), 4.12 ($t, 6$ **H**, $J = 6.5$ **Hz**); ¹⁸C-NMR

1,11-Dioxacycloeicosane-2,4,12,14-tetraone (5e) was obtained in **55%** yield (method A): mp **117.6-117.8 OC;** IR **(KBr) 2962,2853,1744,1711** cm-'; 'H **NMR 6 1.30-1.41** (m, **8** H), **1.56- 1.68** (m, **8 H), 2.53** (t, **4 H,** J ⁼**7.5** *Hz),* **3.42** *(8,* **4** H), **4.15** (t, **⁴ 65.15,166.96, 202.27;** FAB **MS** *mle,* **[M** + **HI+** = **341. H**, $J = 6.0$ **H**_z);¹³C-NMR δ 23.62, 25.65, 28.31, 28.44, 42.54, 49.73,

1,11,21-trioxacyclo~ntane2,4,12,14,22,24-hemone *(6e)* was obtained in **22%** yield (method A): IR (CC4) **2936,28.60, 1744,1718,1230** cm-'; **'H** *NMR* **6 1.30-1.41** (m, **12 H), 1.56-1.68** (m, **12 H), 2.53** (t, **6** H, **J** = **7.2 Hz), 3.42 (a, 6 H), 4.15** (t, **6** H, **167.11,202.29;** FAB **MS** *mle,* **[M** + **HI+** = **511.** *J* = **6.4 Hz);** "C-NMR **S 23.28, 25.57, 28.33,28.45, 42.69,65.22,**

Acknowledgment. We are grateful to the National Science Foundation (Grant CHE-9108231) for financial support of this research and to Bruce C. Noll for *crys***tallographic assistance.**

Supplementary Material Available: IH-NMR data for *M,* **Sd,** *lie,* and *68;* **full** detaile of X-ray crystallographic analyses for compounds **Sa-c** and **lie (32** pages). This **material is** contained in libraries **on** microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; *see* any current masthead page for ordering information.